Nathan E. Crone

Persistent neuronal activity in human prefrontal cortex links perception and action

ABSTRACT

How do humans flexibly respond to changing environmental demands on a subsecond temporal scale? Extensive research has highlighted the key role of the prefrontal cortex in flexible decision-making and adaptive behaviour, yet the core mechanisms that translate sensory information into behaviour remain undefined. Using direct human cortical recordings, we investigated the temporal and spatial evolution of neuronal activity (indexed by the broadband gamma signal) in 16 participants while they performed a broad range of self-paced cognitive tasks. Here we describe a robust domain- and modality-independent pattern of persistent stimulus-to-response neural activation that encodes stimulus features and predicts motor output on a trial-by-trial basis with near-perfect accuracy. Observed across a distributed network of brain areas, this persistent neural activation is centred in the prefrontal cortex and is required for successful response implementation, providing a functional substrate for domain-general transformation of perception into action, critical for flexible behaviour.





AUTHORS

  • Matar Haller

  • John Case

  • Nathan E. Crone

  • Edward F. Chang

  • David King-Stephens

  • Kenneth D. Laxer

  • Peter B. Weber

  • Josef Parvizi

  • Robert T. Knight

  • Avgusta Y. Shestyuk

Date: 2017

DOI: 10.1038/s41562-017-0267-2

View PDF


Spatiotemporal dynamics of word retrieval in speech production revealed by cortical high-frequency band activity

ABSTRACT

Word retrieval is core to language production and relies on complementary processes: the rapid activation of lexical and conceptual representations and word selection, which chooses the correct word among semantically related competitors. Lexical and conceptual activation is measured by semantic priming. In contrast, word selection is indexed by semantic interference and is hampered in semantically homogeneous (HOM) contexts. We examined the spatiotemporal dynamics of these complementary processes in a picture naming task with blocks of semantically heterogeneous (HET) or HOM stimuli. We used electrocorticography data obtained from frontal and temporal cortices, permitting detailed spatiotemporal analysis of word retrieval processes. A semantic interference effect was observed with naming latencies longer in HOM versus HET blocks. Cortical response strength as indexed by high-frequency band (HFB) activity (70–150 Hz) amplitude revealed effects linked to lexical-semantic activation and word selection observed in widespread regions of the cortical mantle. Depending on the subsecond timing and cortical region, HFB indexed semantic interference (i.e., more activity in HOM than HET blocks) or semantic priming effects (i.e., more activity in HET than HOM blocks). These effects overlapped in time and space in the left posterior inferior temporal gyrus and the left prefrontal cortex. The data do not support a modular view of word retrieval in speech production but rather support substantial overlap of lexical-semantic activation and word selection mechanisms in the brain.



AUTHORS

  • Stephanie Ries

  • Rhummit K. Dhillon

  • Alex Clarke

  • David King-Stephens

  • Kenneth Laxer

  • Peter Weber

  • Rachel A. Kuperman

  • Kurtis I. Auguste

  • Peter Brunner

  • Gerwin Schalk

  • Jack J. Lin

  • Josef Parvizi

  • Nathan E. Crone

  • Nina F. Dronkers

  • Robert T. Knight

Date: 2017

DOI: 10.1073/pnas.1620669114

View PDF


Rapid tuning shifts in human auditory cortex enhance speech intelligibility

ABSTRACT

Experience shapes our perception of the world on a moment-to-moment basis. This robust perceptual effect of experience parallels a change in the neural representation of stimulus features, though the nature of this representation and its plasticity are not well-understood. Spectrotemporal receptive field (STRF) mapping describes the neural response to acoustic features, and has been used to study contextual effects on auditory receptive fields in animal models. We performed a STRF plasticity analysis on electrophysiological data from recordings obtained directly from the human auditory cortex. Here, we report rapid, automatic plasticity of the spectrotemporal response of recorded neural ensembles, driven by previous experience with acoustic and linguistic information, and with a neurophysiological effect in the sub-second range. This plasticity reflects increased sensitivity to spectrotemporal features, enhancing the extraction of more speech-like features from a degraded stimulus and providing the physiological basis for the observed ‘perceptual enhancement’ in understanding speech.



AUTHORS

  • Chris Holdgraf

  • Wendy de Heer

  • Brian Pasley

  • Jochem W. Rieger

  • Nathan E. Crone

  • Jack J. Lin

  • Robert T. Knight

  • Frédéric E. Theunissen

Date: 2016

DOI: 10.1038/ncomms13654

View PDF


Differential Sources for 2 Neural Signatures of Target Detection: An Electrocorticography Study

ABSTRACT

Electrophysiology and neuroimaging provide conflicting evidence for the neural contributions to target detection. Scalp electroencephalography (EEG) studies localize the P3b event-related potential component mainly to parietal cortex, whereas neuroimaging studies report activations in both frontal and parietal cortices. We addressed this discrepancy by examining the sources that generate the target-detection process using electrocorticography (ECoG). We recorded ECoG activity from cortex in 14 patients undergoing epilepsy monitoring, as they performed an auditory or visual target-detection task. We examined target-related responses in 2 domains: high frequency band (HFB) activity and the P3b. Across tasks, we observed a greater proportion of electrodes that showed target-specific HFB power relative to P3b over frontal cortex, but their proportions over parietal cortex were comparable. Notably, there was minimal overlap in the electrodes that showed target-specific HFB and P3b activity. These results revealed that the target-detection process is characterized by at least 2 different neural markers with distinct cortical distributions. Our findings suggest that separate neural mechanisms are driving the differential patterns of activity observed in scalp EEG and neuroimaging studies, with the P3b reflecting EEG findings and HFB activity reflecting neuroimaging findings, highlighting the notion that target detection is not a unitary phenomenon.





AUTHORS

  • Julia W. Y. Kam

  • Sara Szczepanski

  • Ryan T. Canolty

  • Adeen Flinker

  • Kurtis I. Auguste

  • Nathan E. Crone

  • Heidi E. Kirsch

  • Rachel A. Kuperman

  • Jack J. Lin

  • Josef Parvizi

  • Robert T. Knight

Date: 2016

DOI: 10.1093/cercor/bhw343

View PDF


Frontal and motor cortex contributions to response inhibition: evidence from electrocorticography

ABSTRACT

Changes in the environment require rapid modification or inhibition of ongoing behavior. We used the stop-signal paradigm and intracranial recordings to investigate response preparation, inhibition, and monitoring of task-relevant information. Electrocorticographic data were recorded in eight patients with electrodes covering frontal, temporal, and parietal cortex, and time-frequency analysis was used to examine power differences in the beta (13–30 Hz) and high-gamma bands (60 –180 Hz). Over motor cortex, beta power decreased, and high-gamma power increased during motor preparation for both go trials (Go) and unsuccessful stops (US). For successful stops (SS), beta increased, and high-gamma was reduced, indexing the cancellation of the prepared response. In the middle frontal gyrus (MFG), stop signals elicited a transient high-gamma increase. The MFG response occurred before the estimated stop-signal reaction time but did not distinguish between SS and US trials, likely signaling attention to the salient stop stimulus. A postresponse high-gamma increase in MFG was stronger for US compared with SS and absent in Go, supporting a role in behavior monitoring. These results provide evidence for differential contributions of frontal subregions to response inhibition, including motor preparation and inhibitory control in motor cortex and cognitive control and action evaluation in lateral prefrontal cortex.






AUTHORS

  • Y.M. Fonken

  • Jochem W. Rieger

  • Elinor Tzvi

  • Nathan E. Crone

  • Edward F. Chang

  • Josef Parvizi

  • Robert T. Knight

  • Ulrike M. Krämer

Date: 2016

DOI: 10.1038/srep25803

View PDF


Oscillatory dynamics coordinating human frontal networks in support of goal maintenance

Abstract:

Humans have a capacity for hierarchical cognitive control—the ability to simultaneously control immediate actions while holding more abstract goals in mind. Neuropsychological and neuroimaging evidence suggests that hierarchical cognitive control emerges from a frontal architecture whereby prefrontal cortex coordinates neural activity in the motor cortices when abstract rules are needed to govern motor outcomes. We utilized the improved temporal resolution of human intracranial electrocorticography to investigate the mechanisms by which frontal cortical oscillatory networks communicate in support of hierarchical cognitive control. Responding according to progressively more abstract rules resulted in greater frontal network theta phase encoding (4–8 Hz) and increased prefrontal local neuronal population activity (high gamma amplitude, 80–150 Hz), which predicts trial-by-trial response times. Theta phase encoding coupled with high gamma amplitude during inter-regional information encoding, suggesting that inter-regional phase encoding is a mechanism for the dynamic instantiation of complex cognitive functions by frontal cortical subnetworks.

Authors:

  • Bradley Voytek

  • Andrew S. Kayser

  • David Badre

  • David Fegen

  • Edward F. Chang

  • Nathan E. Crone

  • Josef Parvizi

  • Robert T. Knight

  • Mark D'Esposito

Date: 2015

DOI: 10.1038/nn.4071

View PDF

Redefining the role of Broca’s area in speech

Authors:

  • Adeen Flinker

  • Anna Korzeniewska

  • Avgusta Shestyuk

  • Piotr Franaszczuk

  • Nina F. Dronkers

  • Robert T. Knight

  • Nathan E. Crone

Date: 2015

DOI: 10.1073/pnas.1414491112

View PDF

Abstract:

For over a century neuroscientists have debated the dynamics by which human cortical language networks allow words to be spoken. Although it is widely accepted that Broca’s area in the left inferior frontal gyrus plays an important role in this process, it was not possible, until recently, to detail the timing of its recruitment relative to other language areas, nor how it interacts with these areas during word production. Using direct cortical surface recordings in neurosurgical patients, we studied the evolution of activity in cortical neuronal populations, as well as the Granger causal interactions between them. We found that, during the cued production of words, a temporal cascade of neural activity proceeds from sensory representations of words in temporal cortex to their corresponding articulatory gestures in motor cortex. Broca’s area mediates this cascade through reciprocal interactions with temporal and frontal motor regions. Contrary to classic notions of the role of Broca’s area in speech, while motor cortex is activated during spoken responses, Broca’s area is surprisingly silent. Moreover, when novel strings of articulatory gestures must be produced in response to non- word stimuli, neural activity is enhanced in Broca’s area, but not in motor cortex. These unique data provide evidence that Broca’s area coordinates the transformation of information across large-scale cortical networks involved in spoken word production. In this role, Broca’s area formulates an appropriate articulatory code to be implemented by motor cortex.

Dynamic changes in phase-amplitude coupling facilitate spatial attention control in fronto-parietal cortex

Authors:

  • Sara Szczepanski

  • Nathan E. Crone

  • Rachel A. Kuperman

  • Kurtis I. Auguste

  • Josef Parvizi

  • Robert T. Knight

Date: 2014

DOI: 10.1371/journal.pbio.1001936

PubMed: 4144794

View PDF

Abstract:

Attention is a core cognitive mechanism that allows the brain to allocate limited resources depending on current task demands. A number of frontal and posterior parietal cortical areas, referred to collectively as the fronto-parietal attentional control network, are engaged during attentional allocation in both humans and non-human primates. Numerous studies have examined this network in the human brain using various neuroimaging and scalp electrophysiological techniques. However, little is known about how these frontal and parietal areas interact dynamically to produce behavior on a fine temporal (sub-second) and spatial (sub-centimeter) scale. We addressed how human fronto-parietal regions control visuospatial attention on a fine spatiotemporal scale by recording electrocorticography (ECoG) signals measured directly from subdural electrode arrays that were implanted in patients undergoing intracranial monitoring for localization of epileptic foci. Subjects (n=8) performed a spatial-cuing task, in which they allocated visuospatial attention to either the right or left visual field and detected the appearance of a target. We found increases in high gamma (HG) power (70–250 Hz) time-locked to trial onset that remained elevated throughout the attentional allocation period over frontal, parietal, and visual areas. These HG power increases were modulated by the phase of the ongoing delta/theta (2–5 Hz) oscillation during attentional allocation. Critically, we found that the strength of this delta/theta phase-HG amplitude coupling predicted reaction times to detected targets on a trial-by-trial basis. These results highlight the role of delta/theta phase-HG amplitude coupling as a mechanism for sub-second facilitation and coordination within human fronto-parietal cortex that is guided by momentary attentional demands.

Decoding spectrotemporal features of overt and covert speech from the human cortex

Authors:

  • Stéphanie Martin

  • Peter Brunner

  • Chris Holdgraf

  • Hans-Jochen Heinze

  • Nathan E. Crone

  • Jochem W. Rieger

  • Gerwin Schalk

  • Robert T. Knight

  • Brian Pasley

Date: 2014

DOI: 10.3389/fneng.2014.00014

PubMed: 4034498

View PDF

Abstract:

Auditory perception and auditory imagery have been shown to activate overlapping brain regions. We hypothesized that these phenomena also share a common underlying neural representation. To assess this, we used electrocorticography intracranial recordings from epileptic patients performing an out loud or a silent reading task. In these tasks, short stories scrolled across a video screen in two conditions: subjects read the same stories both aloud (overt) and silently (covert). In a control condition the subject remained in a resting state. We first built a high gamma (70–150 Hz) neural decoding model to reconstruct spectrotemporal auditory features of self-generated overt speech. We then evaluated whether this same model could reconstruct auditory speech features in the covert speech condition. Two speech models were tested: a spectrogram and a modulation-based feature space. For the overt condition, reconstruction accuracy was evaluated as the correlation between original and predicted speech features, and was significant in each subject (p < 10−5; paired two-sample t-test). For the covert speech condition, dynamic time warping was first used to realign the covert speech reconstruction with the corresponding original speech from the overt condition. Reconstruction accuracy was then evaluated as the correlation between original and reconstructed speech features. Covert reconstruction accuracy was compared to the accuracy obtained from reconstructions in the baseline control condition. Reconstruction accuracy for the covert condition was significantly better than for the control condition (p < 0.005; paired two-sample t-test). The superior temporal gyrus, pre- and post-central gyrus provided the highest reconstruction information. The relationship between overt and covert speech reconstruction depended on anatomy. These results provide evidence that auditory representations of covert speech can be reconstructed from models that are built from an overt speech data set, supporting a partially shared neural substrate.

Proceedings of the Third International Workshop on Advances in Electrocorticography


Authors:

  • Anthony Ritaccio

  • Michael Beauchamp

  • Conrado Bosman

  • Peter Brunner

  • Edward F. Chang

  • Nathan E. Crone

  • Ayesegul Gunduz

  • Disha Gupta

  • Robert T. Knight

  • Eric Leuthardt

  • Brian Litt

  • Daniel Moran

  • Jeffrey G. Ojemann

  • Josef Parvizi

  • Nick F. Ramsey

  • Jochem W. Rieger

  • Jonathan Viventi

  • Bradley Voytek

  • Justin Williams

  • Gerwin Schalk

Date: 2012

DOI: 10.1016/j.yebeh.2012.09.016

PubMed: 23160096

View PDF

Abstract:

The Third International Workshop on Advances in Electrocorticography (ECoG) was convened in Washington, DC, on November 10–11, 2011. As in prior meetings, a true multidisciplinary fusion of clinicians, scientists, and engineers from many disciplines gathered to summarize contemporary experiences in brain surface recordings. The proceedings of this meeting serve as evidence of a very robust and transformative field but will yet again require revision to incorporate the advances that the following year will surely bring.

A method for event-related phase/amplitude coupling

Authors:

  • Bradley Voytek

  • Mark D'Esposito

  • Nathan E. Crone

  • Robert T. Knight

Date: 2012

DOI: 10.1016/j.neuroimage.2012.09.023

PubMed: 22986076

View PDF

Abstract:

Phase/amplitude coupling (PAC) is emerging as an important electrophysiological measure of local and long-distance neuronal communication. Current techniques for calculating PAC provide a numerical index that represents an average value across an arbitrarily long time period. This requires researchers to rely on block design experiments and temporal concatenation at the cost of the sub-second temporal resolution afforded by electrophysiological recordings. Here we present a method for calculating event-related phase/amplitude coupling (ERPAC) designed to capture the temporal evolution of task-related changes in PAC across events or between distant brain regions that is applicable to human or animal electromagnetic recording.

Reconstructing Speech from Human Auditory Cortex

Authors:

  • Brian Pasley

  • Stephen V. David

  • Nima Mesgarani

  • Adeen Flinker

  • Shihab A. Shamma

  • Nathan E. Crone

  • Robert T. Knight

  • Edward F. Chang

Date: 2012

DOI: 10.1371/journal.pbio.1001251

PubMed: 22303281

View PDF

Abstract:

How the human auditory system extracts perceptually relevant acoustic features of speech is unknown. To address this question, we used intracranial recordings from nonprimary auditory cortex in the human superior temporal gyrus to determine what acoustic information in speech sounds can be reconstructed from population neural activity. We found that slow and intermediate temporal fluctuations, such as those corresponding to syllable rate, were accurately reconstructed using a linear model based on the auditory spectrogram. However, reconstruction of fast temporal fluctuations, such as syllable onsets and offsets, required a nonlinear sound representation based on temporal modulation energy. Reconstruction accuracy was highest within the range of spectro-temporal fluctuations that have been found to be critical for speech intelligibility. The decoded speech representations allowed readout and identification of individual words directly from brain activity during single trial sound presentations. These findings reveal neural encoding mechanisms of speech acoustic parameters in higher order human auditory cortex.

Single-trial speech suppression of auditory cortex activity in humans.

Authors:

  • Adeen Flinker

  • Edward F. Chang

  • Heidi E. Kirsch

  • Nicholas M. Barbaro

  • Nathan E. Crone

  • Robert T. Knight

Date: 2010

PubMed: 21148003

View PDF

Abstract:

The human auditory cortex is engaged in monitoring the speech of interlocutors as well as self-generated speech. During vocalization, auditory cortex activity is reported to be suppressed, an effect often attributed to the influence of an efference copy from motor cortex. Single-unit studies in non-human primates have demonstrated a rich dynamic range of single-trial auditory responses to self-speech consisting of suppressed, nonsuppressed and excited auditory neurons. However, human research using noninvasive methods has only reported suppression of averaged auditory cortex responses to self-generated speech. We addressed this discrepancy by recording electrocorticographic activity from neurosurgical subjects performing auditory repetition tasks. We observed that the degree of suppression varied across different regions of auditory cortex, revealing a variety of suppressed and nonsuppressed responses during vocalization. Importantly, single-trial high-gamma power (γ(High), 70-150 Hz) robustly tracked individual auditory events and exhibited stable responses across trials for suppressed and nonsuppressed regions.

Shifts in gamma phase-amplitude coupling frequency from theta to alpha over posterior cortex during visual tasks

Authors:

  • Bradley Voytek

  • Ryan T. Canolty

  • Avgusta Shestyuk

  • Nathan E. Crone

  • Josef Parvizi

  • Robert T. Knight

Date: 2010

DOI: 10.3389/fnhum.2010.00191

PubMed: 21060716

View PDF

Abstract:

The phase of ongoing theta (4–8 Hz) and alpha (8–12 Hz) electrophysiological oscillations is coupled to high gamma (80–150 Hz) amplitude, which suggests that low-frequency oscillations modulate local cortical activity. While this phase–amplitude coupling (PAC) has been demonstrated in a variety of tasks and cortical regions, it has not been shown whether task demands differentially affect the regional distribution of the preferred low-frequency coupling to high gamma. To address this issue we investigated multiple-rhythm theta/alpha to high gamma PAC in two subjects with implanted subdural electrocorticographic grids. We show that high gamma amplitude couples to the theta and alpha troughs and demonstrate that, during visual tasks, alpha/high gamma coupling preferentially increases in visual cortical regions. These results suggest that low-frequency phase to high-frequency amplitude coupling is modulated by behavioral task and may reflect a mechanism for selection between communicating neuronal networks.