Laura A. Hale

Altered prefrontal function with aging: insights into age-associated cognitive decline

Authors:

  • Anne-Kristin Solbakk

  • Galit Fuhrmann Alpert

  • Ansgar J. Furst

  • Laura A. Hale

  • Tatsuhide Oga

  • Sundari Chetty

  • Natasha Pickard

  • Robert T. Knight

Date: 2008

DOI: 10.1016/j.brainres.2008.07.060

PubMed: 18691562

View PDF

Abstract:

We examined the effects of aging on visuo-spatial attention. Participants performed a bi-field visual selective attention task consisting of infrequent target and task-irrelevant novel stimuli randomly embedded among repeated standards in either attended or unattended visual fields. Blood oxygenation level dependent (BOLD) responses to the different classes of stimuli were measured using functional magnetic resonance imaging. The older group had slower reaction times to targets, and committed more false alarms but had comparable detection accuracy to young controls. Attended target and novel stimuli activated comparable widely distributed attention networks, including anterior and posterior association cortex, in both groups. The older group had reduced spatial extent of activation in several regions, including prefrontal, basal ganglia, and visual processing areas. In particular, the anterior cingulate and superior frontal gyrus showed more restricted activation in older compared with young adults across all attentional conditions and stimulus categories. The spatial extent of activations correlated with task performance in both age groups, but the regional pattern of association between hemodynamic responses and behavior differed between the groups. Whereas the young subjects relied on posterior regions, the older subjects engaged frontal areas. The results indicate that aging alters the functioning of neural networks subserving visual attention, and that these changes are related to cognitive performance.

Lapses in a Prefrontal-Extrastriate Preparatory Attention Network Predict Mistakes

Authors:

  • Mayra Padilla

  • Richard A. Wood

  • Laura A. Hale

  • Robert T. Knight

Date: 2006

PubMed: 16989549

View PDF


Abstract:

Mistakes are common to all forms of behavior but there is disagreement about what causes errors. We recorded electrophysiological and behavioral measures in a letter discrimination task to examine whether deficits in preparatory attention predicted subsequent response errors. Error trials were characterized by decreased frontal-central preparatory attention event-related potentials (ERPs) prior to stimulus presentation and decreased extrastriate sensory ERPs during visual processing. These findings indicate that transient lapses in a prefrontal-extrastriate preparatory attention network can lead to response errors.

Rapid Prefrontal-Hippocampal Habituation to Novel Events

Authors:

  • Shuhei Yamaguchi

  • Laura A. Hale

  • Mark D'Esposito

  • Robert T. Knight

Date: 2004

PubMed: 15190108

View PDF

Abstract:

Unexpected novel events generate an orienting response that plays an important role in some forms of learning and memory. The orienting response involuntarily captures attention and rapidly habituates as events become familiarized. Although evidence from patients with focal lesions and scalp and intracranial event-related brain potential recordings supports the involvement of a distributed neural network involving association cortex and the limbic system in novelty detection, the key neural substrates and temporal dynamics have not been defined. While subjects performed a bi-field visual-selective attention task with random novel stimuli embedded in either attended or unattended visual fields, we measured rapid changes of regional blood oxygenation level-dependent (BOLD) signal to target and novel stimuli using single-trial analysis of event-related functional magnetic resonance imaging with a 4T scanner. Habituation was quantified by serial BOLD signal changes during the first 10 novel stimuli for each subject. Novel stimuli activated the bilateral superior/middle frontal gyrus, temporal-parietal junction, superior parietal lobe, cingulate gyrus, hippocampus, and fusiform gyrus. The superior/middle frontal gyrus and hippocampus showed significant reduction of BOLD signal during the first few novel stimuli, whereas the signals in the fusiform and cingulate gyrus were constant. Prefrontal and hippocampal responses to attended and unattended novel stimuli were comparably habituated. These results, and previous data from lesion studies, support the view that prefrontal and hippocampal regions are involved in rapid automatic detection and habituation to unexpected environmental events and are key elements of the orienting response in humans.